Cancer Trials Are Changing. That Could Mean Faster Access To Better Drugs.

June 29, 2015 8:30 am  |  Comments: 0  | Views: 799
    

The National Cancer Institute’s announcement Monday that it will soon begin a nationwide trial to test treatments based on the genetic mutations in patients’ tumors, rather than on where the tumors occur in the body, highlights a profound shift taking place in the development of cancer drugs.

Researchers increasingly are using DNA sequencing, which has become far faster and cheaper over time, to identify molecular abnormalities in cancers. That technology is allowing them to develop drugs they hope will prove more effective in specific sets of patients and to design clinical trials that get the most promising drugs to market more quickly.

“We are truly in a paradigm change,” James H. Doroshow, director of the division of cancer treatment and diagnosis at the NCI, said in announcing the initiative Monday. He called the project “the largest and most rigorous precision oncology trial that’s ever been attempted.”

Traditionally, drug trials have focused on cancers in specific organs, such as the lungs or prostate. But that model is being upended by newer approaches such as basket trials, which group together patients with similar genetic mutations, regardless of the location of their cancers.

Whether these new kinds of trials will prove more beneficial over time remains uncertain, but basket trials already have helped patients such as Bruce Maxwell, a 63-year-old Dublin man diagnosed with bladder cancer in 2012.

Maxwell underwent surgery and chemotherapy, but the disease returned. He had few treatment options left when, in early 2014, he flew to New York and enrolled in a basket trial at Memorial Sloan Kettering Cancer Center. The experimental drug he received had been designed to treat a certain type of breast cancer, but doctors began testing it in patients with other cancers, all of which had a particular genetic mutation.

Nearly 18 months later, Maxwell’s cancer has not advanced.

The NCI project announced Monday comes amid a push by the Obama administration to promote “precision medicine.” Beginning July 1, the institute will begin screening several thousand patients at 2,400 sites around the country, from large academic hospitals to community medical facilities. Those who meet certain criteria will be sorted into nearly two dozen treatment arms of 30 to 35 patients each, based on the genetic mutations of their cancers.

For example, a patient with a kidney tumor might be assigned to a group being treated with a drug traditionally used for a different form of cancer, as long as tests show the drug might work on the tumor’s particular makeup. Each group will receive a different drug provided by pharmaceutical companies that are part of the effort. Drugs may be added to or dropped from the research as the project continues in coming years.

“Certainly, this is where oncology is going,” said Barbara Conley, associate director of the institute’s cancer diagnosis program.

The effort is the latest in a series of trials that federal researchers and others have launched to match the right patients with the right therapies and to streamline regulatory approval. The American Society of Clinical Oncology, for instance, announced this week that it is starting a comparable project that will provide patients with drugs targeted at similar molecular abnormalities and collect the data from oncologists providing their care, to better understand the effectiveness of the treatments.

“The rules of engagement have changed,” said Jose Baselga, physician in chief at Sloan Kettering, which genetically sequences the tumors of every patient and has helped pioneer the use of basket trials.

On a weekday morning, the computer screen in Baselga’s office, high above the East River, offered a glimpse of the changing landscape of cancer trials in the United States. He called up images from one of the numerous basket studies at the hospital. The scans showed historically hard-to-fight tumors in the brain, lungs and other organs melting away in many, though not all, patients with specific genetic mutations. Seldom in the past have cancer drugs yielded such dramatic results.

“That’s the promise of precision medicine,” said Baselga, who worked on one of the first targeted cancer therapies, Herceptin, decades ago. “You [now] have the capability to identify what’s driving the particular tumor and then to devise methodologies that result in a better understanding of the disease and the development of better therapies. That’s where the optimism resides.”

Like Sloan Kettering, some other institutions routinely sequence the tumors of patients, looking for “actionable” mutations that might respond to existing drugs and using the data to create basket trials to test new targeted therapies.

Read More

Write a Reply or Comment

Your email address will not be published. Required fields are marked *